

# Optimization in Machine Learning for Neutrino Classification

Nicole Naporano

August 7, 2020 Summer Undergraduate Research Symposium UC Physics Department

# What Are Neutrinos?—fundamental particles (leptons) with neutral charge

that have puzzlingly small masses and interact only with the Weak Force

- Three flavors (mass states)
- Paired with charged partner
  - $\boldsymbol{v}_{e}$  with electrons
  - $v_{\mu}$  with muons
  - $v_\tau$  with tau particles

# Where do they come from?

- Collisions following Big Bang
- Proton-proton fusion in stars
- Cosmic rays
- Beta decay

UNIVERSITY

( inc



# What makes them so weird?

- Change flavors
  - Superposition of mass states  $v_{1,2,3}$
  - Probability oscillation obeys Schrödinger Equation
- Leptons => don't interact with Strong Force
- Neutral charge => don't interact with EM Force
- Mysterious and sneaky
  - "Normal" hierarchy of masses assumed but not required

**Oscillation frequency**—function of mass, distance traveled, and energy:

 $\sin^2(\varphi)(\Delta m)^2\frac{L}{E}$ 

- In detectors,  $\cos(\varphi) = \operatorname{zenith} \operatorname{angle} \operatorname{from} \operatorname{entry} \operatorname{point}$
- Mixing angles give amplitude of periodic flavor oscillation
- **Mixing matrices**: rows = flavors, columns = mass eigenstates

## Lepton Mixing (PMNS) Matrix—unitary matrix with mixing angles and complex phases

- > Components  $U_{\alpha i}$  with  $\alpha$  = flavor, i = eigenstate
  - Parameterized by mixing angles:
    - $\theta_{13}$  = probability (small) that v<sub>µ</sub> turns into v<sub>e</sub>
    - $\theta_{12}\,$  = probability that  $v_e$  turns into  $v_\mu$  or  $v_\tau$
    - $\theta_{23}$  = probability (close to 45°, nearly max.) that v<sub>µ</sub> turns into v<sub>τ</sub>

#### **Charge-Pairity (CP) Violation**—contradiction of conservation laws, charge conjugation, and pairity

- Complex phase angles invert spacial dimension
  - Change in charge sign
- Occurences in quarks too small to detect alone
- Explanations offered by Standard Model have yet to be proven



 $\begin{bmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{bmatrix} u_{e1} & u_{e2} & u_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu} & U_{\mu} & U_{\mu} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{2} \end{bmatrix}$ 

# **DUNE: Deep Underground Neutrino Detector** — detectors at Fermilab and in South



Dakota; anticipated 2026

- Graphite and Liquid Argon
  - Charged Lepton emitted or neutral current
    - Number of neutrinos and antineutrinos
  - Localize atmospheric oscillations
- Prototype detector ProtoDUNE at CERN
  - Testing AI programs
- Cherenkov radiation detected by light reflectors
  - Treat alternating orientations as pixelated images
- Seeking answers
  - Matter vs. antimatter
  - Sourced from core-collapse supernovae—black hole formation
  - Matter stability and grand unification



## **Problems:**

- $\succ$  v<sub>t</sub> hard to detect, looks like other particles
- $\succ v_{\tau}$  hits take up a lot of image space
  - 500 pixels x 500 pixels for just 4.5 mm
- > Need extreme detail, lots of data
- $\succ$  500 x 500 dataset doesn't entirely fit v<sub>t</sub>
  - Smarter algorithms
- > Data processed as images at various angles
  - Need flat selection efficiency over all angles

#### There are no standard methods to do this!



#### **Sparse Network**— how the Aurisano Machine Learning Group is curating an algorithm

- Sparse tensors: only contain pixels with hits in them
  - Reduced amount of data and computational cost
- > Train the network to have rotation invariance
- > What could make a machine correctly identify  $v_{\tau}$  in the atmosphere?

**Classes of particles:** muons, pions, kaons, michel electrons, particle shower, diffuse scattering, and highly ionized particles (HIP)

Hyperparameters: learning rate (LR), weight decay (WD), gamma, step size, network depth

**Optimization:** loss function, activation function, automated optimizers

# **Optimization Algorithms:** AdamW vs. Ranger



#### AdamW—adaptive moment estimation

- Adaptive Gradient Algorithm + Root Mean Square
  Propogation
- Memory usage minimized
- Efficient when properly tuned
- History of successful super convergence

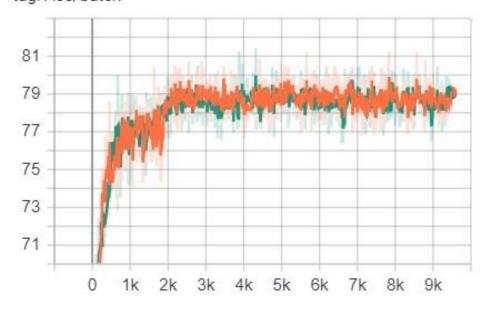
Ranger—RAdam (Rectified Adam) + LookAhead

- Incorporates gradient centralization
  - Restricted loss function
- Quickly converges efficiency of multiple tasks
- Computationally efficient
- Compatible with Mish activation function

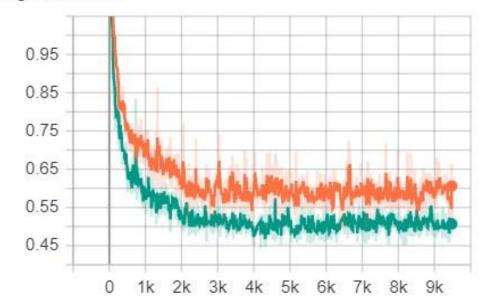


### Default Values: Weight Decay = 0.01, Gamma = 0.1

batch tag: Acc/batch



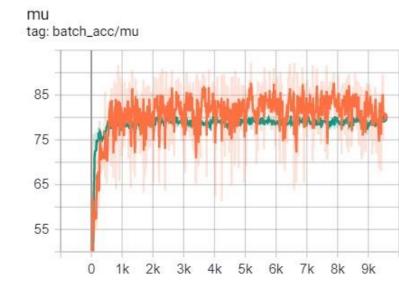
batch tag: Loss/batch

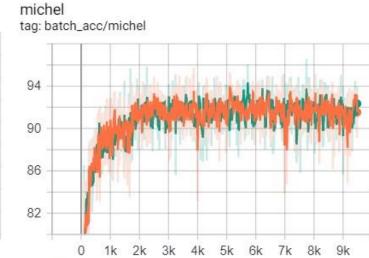


AdamW: End Accuracy = 79.48 Ranger: End Accuracy = 79.13

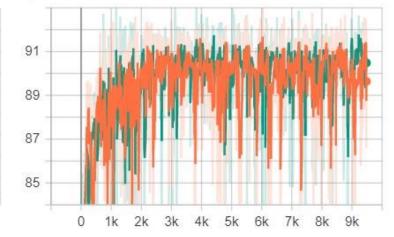
AdamW: End Loss = 0.4824 Ranger: End Loss = 0.6179

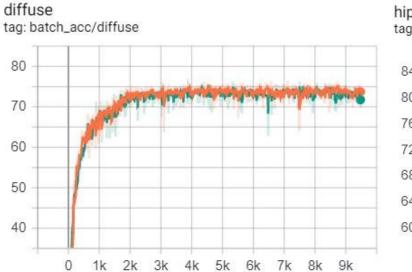


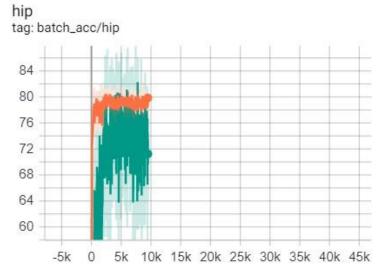


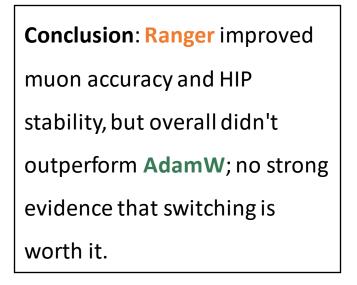








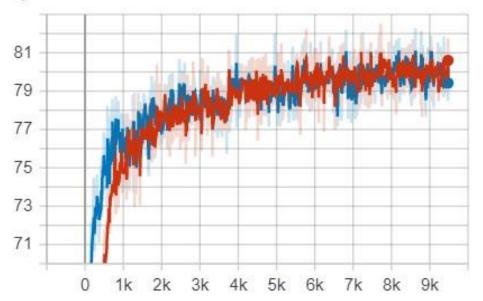






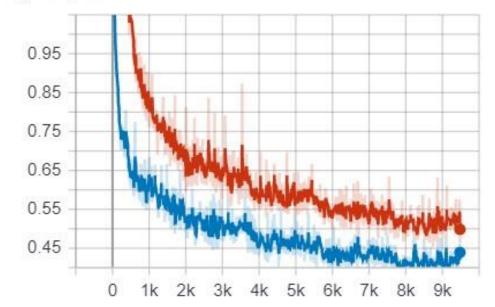
### Chosen Values: Weight Decay = 0.02, Gamma = 0.75

batch tag: Acc/batch



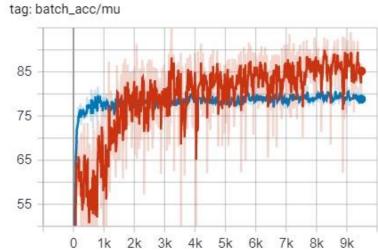
AdamW: End Accuracy = 78.48 Ranger: End Accuracy = 81.75

batch tag: Loss/batch



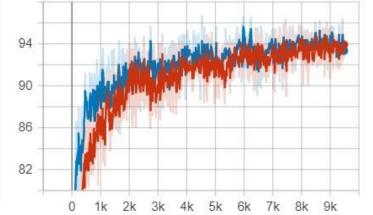
AdamW: End Loss = 0.4421 Ranger: End Loss = 0.4636

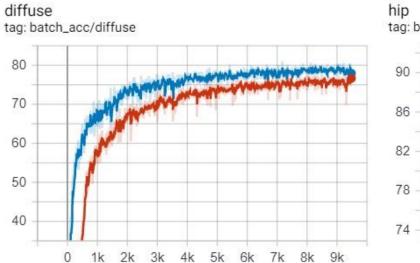


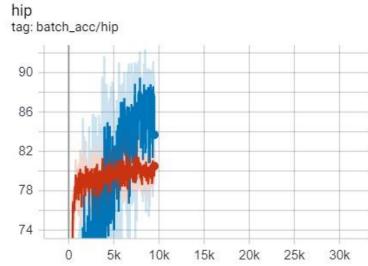


mu

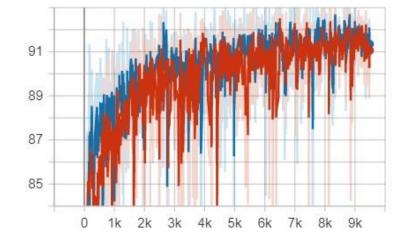








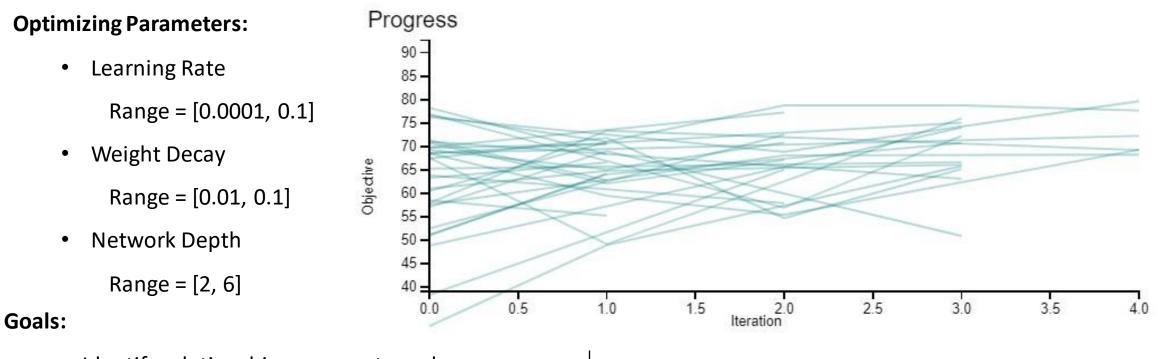
shower tag: batch\_acc/shower



Conclusion: Ranger improved muon and diffuse accuracy, but overall didn't outperform AdamW; no strong evidence that switching is worth it.



# Implementing SHERPA: "a Python Hyperparameter Optimization"



- Identify relationships: parameter values and objective score
- Narrow down ideal ranges for each parameter
- Test behavior with different algorithms

#### Parameters: LR, WD

Highest Accuracy: 70.8 Lowest Accuracy: 26.551

• LR = 0.09907 • LR = 0.08083

## **Algorithms**—choosing and optimizing parameter values



#### Currently using: GPyOpt Bayesian Optimization

- Wrapper based on GPy
  - Gaussian modeling
- Good for many iterations

**Loss Function:** Currently using Categorical Cross Entropy, could consider customizing in the future.

## Moving Forward...

- Test the network on atmospheric datasets
- Push and identify limits of network parameters
- Verify previous results: AdamW vs Ranger

Algorithms to consider in the future:

- Asynchronous Successive Halving—good for many hyperparametrs; stops early to reduce computational cost
- Local Search—analyzes small changes to the model; good when running fewer trials than GPyOpt



# Moving Forward...

#### Unifying Workflow:

- Centralizing code for future use
- Implementing SHERPA
- Have been working with ProtoDUNE and NOvA data separately
- Translate from PyTorch dense tensors to MinkowskiEngine sparse convolution
  - Most activation functions are dense, so modify code to take only the sparse tensor's feature tensor, treat as dense

#### Preparing to test activation functions:

- LeakyReLU
  - Backpropogation
  - Downward slope for negative inputs
- ≻ SELU
  - ReLU for positive input, scaled exponential for negative input
  - Output: mean = 0, RMS = 1
- Swish
  - Bounded below, not above
  - Smooth



# Thank you!

Are there any questions?