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➢ Three flavors (mass states)

➢ Paired with charged partner

νe with electrons

νμ with muons

ντ with tau particles

What Are Neutrinos?—fundamental particles (leptons) with neutral charge 

that have puzzlingly small masses and interact only with the Weak Force

Where do they come from?

➢ Collisions following Big Bang

➢ Proton-proton fusion in stars 

➢ Cosmic rays

➢ Beta decay
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Oscillation frequency—function of mass, distance traveled, and energy:

What makes them so weird?

➢ Change flavors

• Superposition of mass states ν1,2,3

• Probability oscillation obeys Schrödinger Equation

➢ Leptons => don't interact with Strong Force

➢ Neutral charge => don't interact with EM Force

➢ Mysterious and sneaky

• "Normal" hierarchy of masses assumed but not required

• In detectors, = zenith angle from entry point

• Mixing angles give amplitude of periodic flavor oscillation

• Mixing matrices: rows = flavors, columns = mass eigenstates
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Lepton Mixing (PMNS) Matrix—unitary matrix with mixing angles and complex phases

➢ Components with α = flavor, i = eigenstate

• Parameterized by mixing angles:

= probability (small) that νμ turns into νe

= probability that νe turns into νμ or ντ

= probability (close to 45°, nearly max.) that νμ turns into ντ

Charge-Pairity (CP) Violation—contradiction of conservation laws, charge conjugation, and pairity

➢ Complex phase angles invert spacial dimension 

• Change in charge sign

➢ Occurences in quarks too small to detect alone

➢ Explanations offered by Standard Model have yet to be proven
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DUNE: Deep Underground Neutrino Detector — detectors at Fermilab and in South 

Dakota; anticipated 2026

➢ Graphite and Liquid Argon

• Charged Lepton emitted or neutral current

• Number of neutrinos and antineutrinos

• Localize atmospheric oscillations

➢ Prototype detector ProtoDUNE at CERN

• Testing AI programs

➢ Cherenkov radiation detected by light reflectors

• Treat alternating orientations as pixelated images

➢ Seeking answers

• Matter vs. antimatter

• Sourced from core-collapse supernovae—black hole formation

• Matter stability and grand unification
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Problems:

➢ ντ hard to detect, looks like other particles

➢ ντ hits take up a lot of image space

• 500 pixels x 500 pixels for just 4.5 mm

➢ Need extreme detail, lots of data

➢ 500 x 500 dataset doesn't entirely fit ντ

• Smarter algorithms 

➢ Data processed as images at various angles

• Need flat selection efficiency over all angles

There are no standard methods to do this!
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Sparse Network— how the Aurisano Machine Learning Group is curating an algorithm

➢ Sparse tensors: only contain pixels with hits in them 

• Reduced amount of data and computational cost

➢ Train the network to have rotation invariance

➢ What could make a machine correctly identify ντ in the atmosphere?

Classes of particles: muons, pions, kaons, michel electrons, particle shower, diffuse scattering, and 

highly ionized particles (HIP)

Hyperparameters: learning rate (LR), weight decay (WD), gamma, step size, network depth

Optimization: loss function, activation function, automated optimizers
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Optimization Algorithms: AdamW vs. Ranger

AdamW—adaptive moment estimation

• Adaptive Gradient Algorithm + Root Mean Square 

Propogation

• Memory usage minimized

• Efficient when properly tuned

• History of successful super convergence

Ranger—RAdam (Rectified Adam) + LookAhead

• Incorporates gradient centralization

• Restricted loss function

• Quickly converges efficiency of multiple 

tasks

• Computationally efficient

• Compatible with Mish activation function
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Default Values:
Weight Decay = 0.01, Gamma = 0.1

AdamW: End Accuracy = 79.48
Ranger: End Accuracy = 79.13

AdamW: End Loss = 0.4824
Ranger: End Loss = 0.6179
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Conclusion: Ranger improved

muon accuracy and HIP 

stability, but overall didn't

outperform AdamW; no strong

evidence that switching is 

worth it.
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Chosen Values:
Weight Decay = 0.02, Gamma = 0.75

AdamW: End Accuracy = 78.48
Ranger: End Accuracy = 81.75

AdamW: End Loss = 0.4421
Ranger: End Loss = 0.4636
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Conclusion: Ranger improved

muon and diffuse accuracy, 

but overall didn't 

outperform AdamW; no 

strong evidence 

that switching is worth it.
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Implementing SHERPA: "a Python Hyperparameter Optimization"

Optimizing Parameters:

• Learning Rate

Range = [0.0001, 0.1]

• Weight Decay

Range = [0.01, 0.1]

• Network Depth

Range = [2, 6]

Goals:

• Identify relationships: parameter values 

and objective score

• Narrow down ideal ranges for each parameter

• Test behavior with different algorithms 

Parameters: LR, WD

Highest Accuracy: 70.8

• LR = 0.09907

Lowest Accuracy: 26.551

• LR = 0.08083
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Algorithms—choosing and optimizing parameter values

Currently using: GPyOpt Bayesian Optimization

• Wrapper based on GPy

• Gaussian modeling

• Good for many iterations

Algorithms to consider in the future:

• Asynchronous Successive Halving—good 

for many hyperparametrs; stops early to reduce 

computational cost

• Local Search—analyzes small changes to the 

model; good when running fewer trials 

than GPyOpt

Loss Function: Currently using Categorical Cross Entropy, 

could consider customizing in the future.

Moving Forward...

• Test the network on atmospheric datasets

• Push and identify limits of network parameters

• Verify previous results: AdamW vs Ranger
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Moving Forward...

Unifying Workflow:

➢ Centralizing code for future use

➢ Implementing SHERPA

➢ Have been working with ProtoDUNE 

and NOvA data separately

➢ Translate from PyTorch dense 

tensors to MinkowskiEngine sparse 

convolution

• Most activation functions are 

dense, so modify code to take 

only the sparse tensor's feature 

tensor, treat as dense

Preparing to test activation functions:

➢ LeakyReLU 

• Backpropogation 

• Downward slope for negative inputs

➢ SELU

• ReLU for positive input, scaled exponential for 

negative input

• Output: mean = 0, RMS = 1

➢ Swish

• Bounded below, not above

• Smooth
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Thank you!

Are there any questions?


