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What Are Neutrinos?—fundamental particles (leptons) with neutral charge Cincinnati

that have puzzlingly small masses and interact only with the Weak Force

» Three flavors (mass states)
» Paired with charged partner
v, with electrons
v, with muons

v, with tau particles

Where do they come from?

» Collisionsfollowing Big Bang
» Proton-proton fusion in stars
» Cosmic rays

» Beta decay
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What makes them so weird? Cincinnati

» Change flavors
* Superposition of mass states v,
* Probability oscillation obeysSchrodinger Equation
» Leptons=>don't interact with Strong Force
» Neutral charge => don't interact with EM Force
» Mysterious and sneaky

* "Normal" hierarchy of masses assumed but not required

_ L
Oscillation frequency—function of mass, distance traveled, and energy: ~ sin’(@)(am)? E

* Indetectors, cos(¢) = zenith angle from entry point

* Mixing angles give amplitude of periodic flavor oscillation

* Mixing matrices: rows = flavors, columns = mass eigenstates
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Lepton Mixing (PMNS) Matrix—unitary matrix with mixing angles and complex phases Cincinnati
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» Components Usi witha= flavor, i = eigenstate [
e Parameterized by mixing angles:
13 = probability (small) thatv, turns intov,
61, =probabilitythatv, turnsintov,orv,

Oyg = probability (close to 45°, nearly max.) thatv, turns into v,

Charge-Pairity (CP) Violation——contradiction of conservation laws, charge conjugation, and pairity

» Complex phase angles invert spacial dimension
* Changein charge sign
» Occurences in quarks too small to detect alone

» Explanationsoffered by Standard Model have yet to be proven



DUNE: Deep Underground Neutrino Detector — detectors at Fermilab and in South

Dakota; anticipated 2026
» Graphite and Liquid Argon

* Charged Lepton emitted or neutral current

* Number of neutrinos and antineutrinos

* Localize atmospheric oscillations
» Prototype detector ProtoDUNE at CERN

* Testing Al programs
» Cherenkov radiation detected by light reflectors

* Treatalternatingorientationsas pixelated images
» Seeking answers

e Mattervs. antimatter

* Sourced from core-collapse supernovae—black hole formation

 Matterstabilityand grand unification
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Problems:

» v_hard to detect, looks like other particles
» v_ hits take up a lot of image space

e 500 pixels x 500 pixels for just4.5 mm
> Need extreme detail, lots of data
» 500 x 500 dataset doesn't entirely fit v,

* Smarter algorithms
» Data processed as images at various angles

* Need flat selection efficiency over all angles

There are no standard methods to do this!
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Sparse Network— how the Aurisano Machine Learning Group is curating an algorithm

» Sparse tensors: only contain pixels with hits in them
* Reduced amount of dataand computational cost
» Trainthe network to have rotationinvariance

» What could make a machine correctly identify v. in the atmosphere?

Classes of particles: muons, pions, kaons, michel electrons, particle shower, diffuse scattering, and
highly ionized particles (HIP)
Hyperparameters: learning rate (LR), weight decay (WD), gamma, step size, network depth

Optimization: loss function, activation function, automated optimizers
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Optimization Algorithms: AdamW vs. Ranger Cincinnati
AdamW —adaptive moment estimation Ranger—RAdam (Rectified Adam) + LookAhead
e Adaptive Gradient Algorithm + Root Mean Square * Incorporatesgradientcentralization
Propogation e Restricted loss function
* Memory usage minimized * Quickly converges efficiency of multiple
* Efficient when properly tuned tasks
* History of successful super convergence  Computationally efficient

 Compatible with Mish activation function



Default Values:

Weight Decay = 0.01, Gamma =0.1

batch
tag: Acc/batch
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AdamW: End Accuracy = 79.48
Ranger: End Accuracy =79.13

batch
tag: Loss/batch
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AdamW: End Loss = 0.4824
Ranger: End Loss = 0.6179
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mu

tag: batch_acc/mu
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tag: batch_acc/diffuse

80 |
70 |
50 |
50;

40 |

0

1k 2k 3k 4k 5k 6k 7k 8k 9k

UNIVERSITY OF -K{

Cincinnati

michel shower
tag: batch_acc/michel tag: batch_acc/shower
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Chosen Values:

Weight Decay = 0.02, Gamma =0.75

batch
tag: Acc/batch

81
79 |
77.
75
73 |

71

0 1k 2k 3k 4k b5k 6k 7k 8k 9k

AdamW: End Accuracy = 78.48
Ranger: End Accuracy = 81.75
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batch
tag: Loss/batch

0.95 |
0.85
0.75
0.65
0.55

0.45

0 1k 2k 3k 4k 5k 6k 7k 8k 9k

AdamW: End Loss = 0.4421
Ranger: End Loss = 0.4636
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tag: batch_acc/shower

mu
tag: batch_acc/mu

michel
tag: batch_acc/michel
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tag: batch_acc/diffuse tag: batch_acc/hip Conclusion: Ranger lmproved
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| 86 but overall didn't
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| a2 outperform AdamW; no
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' strong evidence
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that switching is worth it.
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Implementing SHERPA: "a Python Hyperparameter Optimization" Cincinnati
Optimizing Parameters: Progress
90 -
* Learning Rate 85 -
Range = [0.0001, 0.1] = ]
« Weight Decay & ;2' o - 3
g e : _
Range =[0.01, 0.1] g Bl -
© 55
* Network Depth 50
45 -
Range = [2, 6] 40 = . . . . . . - 1
0.0 05 1.0 15 20 25 3.0 35 40
Goals: lteration

* ldentify relationships: parameter values
Parameters: LR, WD
and objective score
_ Highest Accuracy: 70.8  Lowest Accuracy: 26.551
 Narrow down ideal ranges for each parameter
_ _ _ , LR =0.09907 e LR =0.08083
e Test behaviorwith different algorithms
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Algorithms—choosing and optimizing parameter values Cincinnati
Currently using: GPyOpt Bayesian Optimization Algorithms to considerin the future:
* Wrapper based on GPy * Asynchronous Successive Halving—good
e Gaussian modeling for many hyperparametrs; stops early to reduce
* Good for many iterations computational cost

* Local Search—analyzessmall changes to the

Loss Function: Currently using Categorical Cross Entropy, model; good when running fewer trials

could consider customizingin the future. than GPyOpt

Moving Forward...

e Test the network on atmospheric datasets
* Push and identify limits of network parameters

* Verify previousresults: AdamW vs Ranger



Moving Forward...

Unifying Workflow:
» Centralizingcode for future use
» Implementing SHERPA
» Have been working with ProtoDUNE
and NOvVA data separately
» Translatefrom PyTorch dense
tensors to MinkowskiEngine sparse
convolution
* Most activation functionsare
dense, so modify code to take
only the sparse tensor's feature

tensor, treat as dense

Preparing to test activation functions:
» LeakyRelU
* Backpropogation
« Downward slope for negativeinputs
» SELU
* RelU for positive input, scaled exponential for
negativeinput
* OQOutput:mean=0,RMS=1
» Swish
* Bounded below, not above

e Smooth
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Thank you!

Are there any questions?



